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Abstract. Deep learning classification models are extensively utilized 
for the automated diagnosis of heart disease (HD) by analyzing various 
physiological signals, such as electrocardiogram (ECG), magnetocardio-
graphy (MCG), heart sounds (HS) and impedance cardiography (ICG) 
signals. In this study, we introduce the ONNYX framework (Optimal 
Neural Networks Yielding eXplainable insights from ECG signals-based 
data streams), which demonstrates a big data strategy for ECG classifi-
cation. This framework incorporates several modules, including FastAPI, 
MinIO, mlflow, Ray, Kubernetes, and Pulsar. We have developed a high 
throughput and low latency system using Kubernetes’ distributed archi-
tecture and Ray’s distributed training to classify ECG signals. The ECG 
records of subjects sourced from the MIT-BIH repository are sampled 
and input into the classification models to distinguish between normal
and abnormal heart rate patterns in patients. We introduce an innovative
optimal model selection algorithm that assesses classification techniques
according to training efficiency and identifies the most suitable ones for
testing. Our weighted ensemble method attained an overall accuracy
of 99.27% and 99.16% in binary and multiclass classification settings
respectively.

Keywords: ElectroCardiogram signals · Heart Rate Variability · 
Distributed deep learning · Explainable AI

1 Introduction 

Cardiovascular diseases (CVDs) are the leading cause of death worldwide, claim-
ing more t han 17 million lives each year1. These include coronary artery disease,
1 https://www.who.int/health-topics/cardiovascular-diseases. 
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rheumatic heart disease, and heart failure, with many premature deaths occur-
ring in individuals under 70 years [1]. Conditions such as arrhythmias and valve 
disorders disrupt cardiac function, often requiring clinical intervention [2]. Man-
ual interpretation of ECGs is time-consuming and error-prone, particularly in 
low-resource settings. Deep learning offers a promising alternative, with mod-
els increasingly used to detect CVDs from ECG signals [3]. These approaches 
enhance diagnostic speed and accuracy, facilitating personalized care. Advance-
ments in AI have transformed healthcare, excelling in image analysis tasks such 
as X-rays, CT, MRI, and mammograms, often assisting medical persons in 
detecting conditions such as tumors and fractures. In deep learning, we have
noticed that convolutional networks [4] have proven successful in chest radio-
graphs and ECG data to identify irregular heart patterns (arrhythmias). The 
capacity of these approaches to identify s ymptoms of cardiovascular disease may
be further enhanced by including transfer learning [5] and federated learning 
methodologies [6]. On the other hand, the concept of employing an online deep 
learning system could introduce a vital element for improving the real-time i den-
tification of CVDs, which might be essential for quicker diagnostics.

In this work, we propose ONNYX (Optimized Neural Networks Yielding 
eXplainable insights from ECG signals), a real-time CVD detection framework 
leveraging a distributed Kubernetes-based architecture. ONNYX concurrently 
deploys multiple deep learning models, using a m ulti-armed bandit strategy with
Thompson sampling to dynamically select the best-performing model based on
incoming data streams. Our key contributions are:

(a) We introduce a microservice-based AI framework for arrhythmia detection 
from ECG streams using scalable deep learning deployments.

(b) We implement distributed concurrent model execution, with adaptive model 
selection via probabilistic Thompson sampling; Apache Pulsar is used to
simulate real-time data ingestion.

(c) We enhance model interpretability using SHAP and achieve a 99.27% 
(binary classification) and 99.16% (multiclass c lassification) accuracy via
probabilistic ensembling of top-performing classifiers.

In the subsequent section, we examine various methodologies employed in 
the domain of ECG classification that have inspired the present study.

2 Related Works 

Traditional ECG interpretation systems struggled with intraclass variability 
and overreliance on supervised d atasets, often performing poorly on unseen
data [7]. Deep learning methods, particularly CNNs, have since demonstrated 
cardiologist-level accuracy in multi-label ECG classification, o utperforming com-
mercial systems when trained on large datasets [8]. Architectures like 1D ResNet 
extract features directly from heartbeat sequences, improving diagnostic capabil-
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ity [ 9]. However, challenges remain in model explainability and bias mitigation, 
prompting the use of techniques like LIME to highlight important ECG seg-
ments [10]. 

To address class imbalance and enhance generalization, hybrid methods using 
Bi-LSTM with GANs and SMOTE have been explored, though most studies
remain retrospective, lacking scalable, real-time implementations [9]. Big data 
analytics have enabled ECG-derived predictions of structural abnormalities such 
as left ventricular mass, yet real-time inference remains underexplored [11]. Vari-
ability in ECG formats and annotation standards also impairs mo del interoper-
ability [12]. 

Efforts to integrate Complex Event Processing (CEP) with LSTM models 
show promise for streaming p rediction but face scalability issues under fluctu-
ating data loads [13]. While frameworks using Apache Spark and Flink support 
high-throughput analytics, they either rely on micro-batching or lac k native deep
learning support, complicating deployment in clinical settings [14]. Clinical deci-
sion support systems increasingly incorporate explainable AI, yet face similar 
integration and scalabilit y challenges when applied to real-time cardiovascular
monitoring.

In the next section, we elaborate on the different microservices-based modules 
that were considered in the ONNYX framework.

3 ONNYX Framework 

Figure 1 illustrates the open source and modular containerized framework pro-
posed for the classification of ECG data streams and the early detection of
arrhythmias.

To integrate the underlying principles of the algorithms utilized in the pro-
posed ECG classification framework, a concise description and analysis of the 
performance effects of each module are provided in Table 1. 

3.1 Data Ingestion and Preprocessing 

Training data is ingested via a FAST API2 endpoint and stored in MinIO3,  a  
high-performance, S3-compatible object store used as a data lake. This schema-
on-read approach supports scalable, cloud-native storage and efficient handling 
of large, unstructured d eep learning datasets. MinIO enables parallel read/write
operations and outperforms traditional databases for such workloads.

The Ra y4 job first ingests this data into Ray Data and applies filtering f unc-
tions to enhance signal quality:

1. Bandpass Filter: We use a bandpass filter (0.5âĂŞ50 Hz) to remove low and 
high-frequency noise, like that from muscle contractions or electrical equip-
ment, improving signal clarity.

2 https://fastapi.tiangolo.com/. 
3 https://min.io/. 
4 https://www.ray.io/. 

https://fastapi.tiangolo.com/
https://fastapi.tiangolo.com/
https://fastapi.tiangolo.com/
https://fastapi.tiangolo.com/
https://min.io/
https://min.io/
https://min.io/
https://www.ray.io/
https://www.ray.io/
https://www.ray.io/
https://www.ray.io/
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Fig. 1. ONNYX F ramework

Table 1. Summary of ONNYX Architecture

Component Technology Details 
Streaming Apache Pulsar Rationale: Utilizes a robust eve nt streaming platform

for managing real-time data flows
Performance Boost: Delivers sub-second latency and
high throughput for contin uous data ingestion

Distributed Computing Ray Rationale: Leverages a distributed framew ork to
enable concurrent t ask execution
Performance Boost: Dynamically scales compute resources
to reduce overall pro cessing time

Preprocessing Ray Data Rationale: Employs distributed data handling
to efficiently transform and augmen t datasets
Performance Boost: Minimizes I/O and c omputation bottlenecks
to enhance prepro cessing throughput

Model Training Ray Train, PyTorch, TensorFlowRationale: Integrates scalable deep learning libraries
for training on varied hardware
Performance Boost: Accelerates training c ycles by
distributing workloads across mu ltiple nodes

HPO (Hyperparameter
Optimization)

Ray Tune Rationale: Uses advanced searc h algorithms

to systematically optimize h yperparameters
Performance Boost: Cuts down tuning iterations, conserving
computational resources 

Model Serving Ray Serve Rationale: Provides a modular framework for deploying
production-grade ML mo dels
Performance Boost: Supports autoscaling and async hronous processing
for real-time inference

Explainability (XAI) SHAP Rationale: Integrates interpretability too ls to elucidate
model predictions a nd decisions
Performance Boost: Enhances transparency and compliance
by quantifying feature con tributions

Orchestration Kubernetes Rationale: Automates container orch estration for streamlined
service deploymen t
Performance Boost: Boosts system resilience and uptime
with dynamic scaling and self-healing capabilities

Model Tracking MLflow Rationale: Enables systematic logging and t racking of
experiments and m etadata
Performance Boost: Facilitates reproducibility and comparative analysis
of model v ersions

Storage MinIO Rationale: Employs a high-performance ob ject storage
system compatible with S3 APIs
Performance Boost: Supports scalable, sc hema-on-read storage for
efficient data access in ML workloads
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2. Notch Filter: Notch filter removes narrow frequency interference, specifically 
powerline n oise (60Hz in the US, 50Hz elsewhere).

Ray Data facilitates efficient I/O and preprocessing operations that scale across 
multiple nodes, overcoming data bottlenecks that t ypically arise when using in-
memory single-machine compute via Pandas5. 

3.2 Model Training 

Our system uses Ray Train to parallel-train multiple deep learning models (built
with PyTorch6) across distributed CPUs and a dedicated GPU. This accelerates 
training and optimizes resource use by dynamically scaling tasks across clusters. 
We elaborate on the various classifiers, their respective architecture and the
rationale behind using them in Table 2. 

Table 2. Architectural Summary of Deep Learning Models for ECG Classification

Model Architecture Rationale 

Simple1DCNN [15] Stacked 1D Convolutional layers 
→ Max Pooling 
→ F ully Connected layer

Automatically extracts spatial hierarchies 
from raw signals, 
excelling in the detection of ECG arrhyth-
mias 
Gener alizes well across signal qualities,
robust to noise

CNN-BiGRU Convolutional layers 
→ Max Pooling 
→ Bidirectional GRU layer 
→ Fully Connected layer

Combines spatial and temporal modeling. 
CNN detects 
morphology, BiGRU captures bidirectional 
dependencies 
Improves sequence awareness in
arrhythmia classification

CNN-LSTM [16] Convolutional layers 
→ Max Pooling 
→ Bidirectional LSTM layer 
→ Fully Connected layer

Extracts spatial features via CNN and mod-
els 
temporal dependencies via LSTM 
Effective for long ECG windows where
rhythm and morphology matter

EfficientNet1D [17] Scaled 1D Convolutional blocks 
→ Batch Normalization and Activation 
→ Adaptive Average P ooling
→ Fully Connected layer

Balances depth, width, and resolution for 
optimal performance with fewer parameters 
Efficient and accurate for real-time ECG
applications

ResNet1D [18] Initial Convolution 
→ Residual Blocks with skip connections 
→ Deep stac king
→ Fully Connected layer

Residual connections prevent vanishing 
gradients 
Captures fine-grained ECG variations 
while t raining deeper networks

Transformer1D [19] Initial Convolution 
→ Transformer Encoder blocks 
→ Multi-head Attention + Feed-forward 
lay ers
→ Fully Connected layer

Uses self-attention to capture global depen-
dencies 
Ideal for modeling long ECG sequences
without recurrence

5 https://pandas.pydata.org/. 
6 https://pytorch.org/. 

https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pandas.pydata.org/
https://pytorch.org/
https://pytorch.org/
https://pytorch.org/
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Hyperparameter Optimization. Ray T une7 uses Bayesian Hyperparameter 
Optimization for parallel execution to quickly find optimal classifier hyperparam-
eters. It is more efficient than grid or random search since it uses a p robabilistic
model to explore promising options and prunes underperforming models early,
saving computational resources.

Explainability (XAI). Integrating XAI is crucial for us when working with 
models trained on the MIT-BIH arrhythmia dataset, given the critical nature of 
medical AI. SHapley Additive exPlanations (SHAP) significantly enhances our 
model’s interpretability, which is vital for achieving clinical acceptance and build-
ing trust. It helps us identify if our models are learning incorrect patterns (for 
example, from irreleva nt ECG features) and also aids in amending any biases.
SHAP also provides explanations for each patient, offering clinicians valuable
insight into the rationale behind our model’s specific ECG classifications.

3.3 Model Ranking 

Instead of static weighting, we rank classifiers using a multi-armed bandit app-
roach with Thompson Sampling. This allows us to dynamically balance exploring 
new ranking possibilities with exploiting previously successful ones, ensuring we
always select the optimal classifier for predictions.

Multi-bandits Algorithm for Model Ranking. The algorithm begins with 
Initialization (line 2), setting success and failure counters si =  0  and fi = 0
for each classifier i.

In the Main Loop (lines 3–14), repeated for t =  1  to T , it first performs 
Sampling (line 5) by drawing θi ∼ Beta(si + 1, fi + 1), modeling uncertainty
using the Beta-binomial framework.

Then, it executes Selection (line 7), choosing j = arg maxi θi , balancing
exploration and exploitation.

The chosen classifier yields a binary Reward r ∼ Binomial(1,  pj) (line 8), 
and the algorithm Updates Count ers (lines 9–12): incrementing sj if r = 1,
otherwise fj .

Finally, after T rounds, the estimated success probability for each classifier 
is computed as 

p̂i = 
si 

si + fi + E

with E preventing division by zero. Classifiers are then ranked by p̂i (line 15).
Each step systematically integrates new information, ensuring an optimal 

selection process through a balance of exploration and exploitation.
The rationale behind ranking models using Thompson sampling than just 

using metrics like F1 Score or Accuracy is that they are a point estimate and 
inform us how well a model did on a fixed test set, ignoring variance and lacking
dynamic adjustment to account for possible data distributions drift.
7 https://docs.ray.io/en/latest/tune/index.html. 

https://docs.ray.io/en/latest/tune/index.html
https://docs.ray.io/en/latest/tune/index.html
https://docs.ray.io/en/latest/tune/index.html
https://docs.ray.io/en/latest/tune/index.html
https://docs.ray.io/en/latest/tune/index.html
https://docs.ray.io/en/latest/tune/index.html
https://docs.ray.io/en/latest/tune/index.html
https://docs.ray.io/en/latest/tune/index.html
https://docs.ray.io/en/latest/tune/index.html
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Algorithm 1. Thompson Sampling for Classifier Selection 
1: Input: Number of classifiers n, number of rounds T , true reward probabilities 

{p1,  p2,  .  .  .  ,  pn},  classifier  names.  
2: Initialize: For each classifier i =  1,  .  .  .  ,  n,  set  

si ← 0 (successes) and fi ← 0 (failures). 

3: for t =  1  to T do 
4: for i =  1  to n do 
5: Sample θi ∼ Beta(si +  1,  fi +  1). 
6: end for 
7: Select classifier j =  arg  maxi θi. 
8: Obtain reward r ∼ Binomial(1,  pj). 
9: if r = 1 then

10: sj ← sj + 1.
11: else
12: fj ← fj + 1.
13: end if
14: end for
15: Output: For each classifier i, compute the posterior mean:

p̂i =
si

si + fi + E
,

with a small E > 0 to avoid division by zero. Sort classifiers based on p̂i in descending
order.

3.4 Model Ensembling 

In our approach, we selected the top n =  3  models from the Thompson Sampling 
Multi-Armed Bandit ranking, as supported by the ablation study in Table 5.  To  
ensure numerical stability during weight computation, we introduced a small 
constant E =  1  × 10−6. The we ight for each model was calculated using:

w = 
1 

(1 − Accuracy ) + E

This formulation assigns greater importance to more accurate models. We 
obtained class probabilities from each selected model on the test set Xtest,  and  
combined them using a we ighted average. Final binary predictions were derived
by applying a 0.5 threshold to the aggregated probabilities.

The PWPAE framework inspired our method [20], which emphasises dynamic 
model selection and performance-based weighting. By prioritising models with 
lower error rates, we enhanced the robustness and generalizability of the ensem-
ble. We evaluated its performance using accuracy, precision, recall, and F1 score.

The rationale to use this ensembling technique over top-ranked classifier or 
a non weighted ensemble is that it gives higher weight to better models while 
still retaining contributions from others, thereby mitigating overconfidence and
reducing the impact of model-specific bias and overfitting tendencies.
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3.5 Model Management and Experiment Tracking 

MLflow 8 handles model logging, tracking performance metrics, and managing 
serialized model files. It also allows data scient ists to perform comparisons with
various visualization tools.

3.6 Model Serving 

ONNYX serves models via Ray Serve over an HTTP endpoint to enable low-
latency, autoscalable inference as a Prediction-as-a-Service framew ork. To man-
age burst traffic and cold-start delays, Apache Pulsar9 is used as a message queue 
between the client and the model endpoint. Predictions are published back to 
the client and forwarded to the data lake via Pulsar.

Unlike Apache Kafka, which uses polling and disk-based storage that can 
increase latency and overwhelm downstream services, Pulsar offers native queue-
ing, in-memory caching, and m ultitopic routing—enabling controlled, efficient,
and parallel data flow to clients and storage.

3.7 Kubernetes 

Kubernetes 10 orchestrates ONNYX’s distributed model services, offering scala-
bility, reliability, and cloud-agnostic deployment across local or cloud infrastruc-
tures (AWS, GCP, Azure). It ensures dynamic l oad balancing, autoscaling, and
fault tolerance. For local development, we used Minikube11 with the Dock er12
driver, ensuring consistent testing across environments.

4 Experimental Results and Discussion 

In this section, we examine the various experimental results o btained during the
ECG classification process.

4.1 MIT-BIH Arrhythmia Dataset 

The MIT-BIH Arrhythmia Database [21], a widely recognized resource for ECG 
analysis, contains 48 half-hour, two-channel ambulatory ECG recordings col-
lected from 47 subjects between 1975 and 1979. The researchers digitized these 
recordings at 360 samples per second with 11-bit resolution, selecting a mix of
random excerpts and clinically significant cases of arrhythmia.

In our study, we adopted a 70:30 intra-patient train-test split strategy, where 
ECG beats from the same patient may appear in both training and testing sets. 
This is consistent with several p rior works that benchmark ECG arrhythmia clas-
sification performance on the MIT-BIH dataset using similar splitting strategies
[3, 4].
8 https://mlflow.org/. 
9 https://pulsar.apache.org/. 

10 https://kubernetes.io/. 
11 https://minikube.sigs.k8s.io/docs/. 
12 https://www.docker.com/. 

https://mlflow.org/
https://mlflow.org/
https://mlflow.org/
https://pulsar.apache.org/
https://pulsar.apache.org/
https://pulsar.apache.org/
https://pulsar.apache.org/
https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
https://minikube.sigs.k8s.io/docs/
https://minikube.sigs.k8s.io/docs/
https://minikube.sigs.k8s.io/docs/
https://minikube.sigs.k8s.io/docs/
https://minikube.sigs.k8s.io/docs/
https://minikube.sigs.k8s.io/docs/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
https://www.docker.com/
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Fig. 2. Signal Before and After Filtering

Figure 2 demonstrates the impact of signal processing using a bandpass and 
notch filter on each class within the dataset. This filtering procedure enhances 
the signal by mitigating baseline d rift, attenuating high-frequency noise, and
diminishing power line interference, while maintaining critical electrocardiogram
characteristics.

Table 3. Thompson Ranked Classifier Metrics o n Binary Classification

Rank Name Estimated Reward Accuracy Precision Recall F1 Score Hyperparameters 
1 ResNet 0.9927 0.9920 0.9689 0.9558 0.9623 lr = 0 .0016
2 CNN-LSTM 0.9821 0.9810 0.9515 0.8673 0.9075 conv = 8.4945, lstm = 25.5679, lr = 0.0095
3 EfficientNet 0.9779 0.9816 0.9623 0.8618 0.9093 lr = 0 .0038
4 Transformer 0.9730 0.9766 0.9315 0.8440 0.8856 lr = 0 .0007
5 CNN-BiGRU 0.7778 0.9823 0.9427 0.8888 0.9150 conv = 8.4945, gru = 30.8171, lr = 0.0073
6 1D-CNN 0.5000 0.9725 0.9522 0.7832 0.8595 conv = 9.1833, lr = 0.0030

Table 3 illustrates the results of various models along with their respective 
rankings. Our analysis covers six deep learning methodologies, executed con-
currently within the distributed ONNYX framework. We observed that ResNet 
requires a substantially longer duration for training in comparison to other mod-
els, whereas the 1D-CNN model demonstrates the shortest training time. Addi-
tionally, we recognize that sophisticated models like Transformers also require 
considerable training time. The implemented ranking method positions ResNet,
CNN-LSTM, and EfficientNet as the top three models. This ranking strategy
facilitates the identification of models that may be integrated with probabilities
to advance in the ensemble process.
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Table 4. Thompson Ranked Classifier Metrics o n Multiclass Classification

Rank Name Estimated Reward Accuracy Precision Recall Hyperparameters 
1 ResNet 0.9914 0.9911 0.9911 0.9911 lr = 0 .001644585
2 Transformer 0.9869 0.9868 0.9864 0.9868 lr = 0 .000675028
3 1D-CNN 0.9863 0.9804 0.9795 0.9804 conv = 9.1833, lr = 0.002983168
4 EfficientNet 0.9757 0.9838 0.9831 0.9838 lr = 0 .003807947
5 CNN-LSTM 0.9388 0.9326 0.8986 0.9326 conv = 8.4945, lstm = 25.5679, lr = 0.009512072
6 CNN-BiGRU 0.9369 0.9115 0.8768 0.9115 conv = 8.4945, gru = 30.8171, lr = = 0.00734674

To demonstrate the framework’s capability, we also perform multiclass clas-
sification, and the respective metrics are depicted in Table 4. While we do see a 
shift in the rankings of the classifiers, given the dynamic nature of the pipeline, 
the best-performing ensemble will ultimately be put into production. We have 
presented u pcoming results on binary and multiclass classification to depict the
capability of ONNYX in detecting arrhythmia on ECG data streams.

Figure 3 illustrates the accuracy of deep learning models, demonstrating 
marked improvements in classification performance in various ep ochs for both
Binary and Multi Class classifiers (Table 6). 

(a) Binaryclass Classifiers (b) Multiclass Classifiers 

Fig. 3. Change in Accuracy Epoch in Binary and Multiclass Classifiers

Table 5. Thompson Ranked Weighted Ensemb le Binary Classifier Metrics

Ensemble Size Models Model Weights Accuracy Precision Recall F1-Score 
2 ResNet,EfficientNet 0.7096,0.2904 0.9925 0.9761 0.9533 0.9646 
3 ResNet,EfficientNet,CNN-LSTM 0.5713,0.2338,0.1950 0.9927 0.9804 0.9509 0.9654 
4 ResNet,EfficientNet,CNN-LSTM,1DCNN 0.4868,0.1992,0.1661,0.1479 0.9923 0.9785 0.9490 0.9635
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Table 6. Thompson Ranked Weighted Ensemb le Multiclass Classifier Metrics

Ensemble Size Models Model Weights (Normalized) Accuracy Precision Recall F1-Score 
2 ResNet, Transformer 0.5983, 0.4017 0.9916 0.9915 0.9916 0.9915 
3 ResNet, Transformer, 1D-CNN 0.4707, 0.3161, 0.2132 0.9909 0.9907 0.9909 0.9907 
4 ResNet, Transformer, 1D-CNN, EfficientNet 0.3741, 0.2512, 0.1694, 0.2053 0.9912 0.9910 0.9912 0.9910 

Table 5 shows the results of the different ensembles created from the top-
ranked models identified in Table 3 for binary classification. We conducted an 
ablation analysis using two, three and four models to determine the optimal 
ensemble combination that may improve classification performance. In addition, 
custom weights were formulated and integrated into each model to facilitate 
improved convergence. We observed that the ensemble comprising three method-
ologies, namely ResNet, EfficientNet, and CNN-LSTM, demonstrated superior 
performance across all metrics, achieving an exceptional accuracy of 99.27%.
Performance variations among the various ensembles fluctuated within a margin
of 0.01% to 0.03%, indicating enhanced performance through the majority vot-
ing ensembles. In addition, Table 6 presents the same analysis for a multiclass 
scenario. In this table, we observe that the ensemble size of 2 outperforms all
other ensembles and thus is put to production.

Table 7. Inference Metrics for Top 3 Binary Ensemble Classifier

Signals Total Time ( s) Throughput (SPS) Avg Latency (ms) Min Latency (ms) Max Latency (ms) 95% Latency ( ms)

50 1.5083 33.1490 30.1626 14.3369 60.9237 58.9972 
100 3.9701 25.1880 39.6973 13.7745 65.6122 65.3230 
200 7.7110 25.9371 38.5503 13.8197 73.2426 65.5490 
500 19.8225 25.2239 39.6403 13.9686 72.7405 65.2281 
1000 40.3844 24.7621 40.3795 14.1674 67.4932 65.5553 

Table 7 presents the inference metrics for the classifier of the highest per-
forming binary ensemble, while being served on Ray, evaluated using increas-
ing request sizes from 50 to 1000. We observe that the average latency ranges 
from 30.16 ms (50 requests) to 40.38 ms (1000 requests). At the 95th percentile 
latency also remains consistent at 65 ms. The maximum latency increases slightly 
with load, peaking at 73 ms, but does not indicate exponential degradation.
Throughput (signals per second, SPS) falls slightly as the number of requests
increases from 33.15 SPS, at 50 requests to 24.76 SPS, at 1000 requests. Similarly
Table 8 presents the top-performing multiclass ensemble classifier. We observe 
that the classifier maintains stable performance under increasing load, with aver-
age latency remaining around 32–35 ms and 95th percentile latency consistently
below 57 ms, supporting real-time inferencing. Compared to the binary classifier
(Table 7), the multiclass classifier (Table 8) exhibits slightly lower 95th percentile 
latency and more stable throughput under load.
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Table 8. Inference Metrics for Top 2 Multiclass Ensemble Classifier

Signals Total  Time  (  s) Throughput (SPS) Avg Latency (ms) Min Latency (ms) Max Latency (ms) 95% Latency (ms)

50 1.7333 28.8462 34.6614 10.3165 57.7038 57.4033 
100 3.2563 30.7096 32.5583 10.2194 58.3754 57.2018 
200 6.7294 29.7203 33.6428 10.5564 57.7880 56.3047 
500 15.9278 31.3917 31.8512 9.8152 58.0600 56.3062 
1000 34.3374 29.1228 34.3327 9.6526 61.5697 56.5906 
2000 69.6609 28.7105 34.8254 9.5381 59.2717 56.9662 

(a) Multiclass Classifier (b) Binaryclass Classifier 

Fig. 4. XAI Plot for RESNET

Figure 4a and Fig. 4b are violin summary plots for RESNET which offers 
compact representation of the distribution and variability of SHAP values for 
each feature. The plots above illustrate the top 8 features. Shap values o n the
X-axis correspond to the importance of the element in the prediction of the
model. From Fig. 4a, we learn that on the multi-class model, features t101, t103, 
and t99 dominate the influence of the model. While from Fig. 4b  we  observe  
that on the binary class model, features t47, t52, t50 dominate the influence 
of the model. The binary model shows a wider shap value spread, indicating 
stronger feature influence on predictions, while the multi class model showcases 
a narrow spread, indicating lower variability in feature influence across different
predictions. The contrasting SHAP distributions suggest that the binary model
relies more heavily on specific features for decision-making, while the multi-class
model distributes importance more uniformly across features.

We compare ONNYX to existing benchmarks in the field o f ECG classifica-
tion in Table 9.
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Table 9. Performance Comparison of ONNYX with Benchmark Models

Study/Model Accuracy Type Remarks 
ONNYX 99.27% Binary & MulticlassApproach: Ensemble of DL models with adaptiv e selection (Thompson sampling)

Key Features: Real-time Kubernetes deployment, SHAP explainabilit y, Apache Pulsar
Limitations: High computational c omplexity

EBM [ 22] 96.84% Binary Approach: Explainable Boosting M achine
Key Features: Uses a lightweight, interpretable EBM o n resource-constrained edge devices
Limitations: Lower accuracy, relying on h andcrafted feature extraction

CNN-LSTM-SE [ 23] 98.5% Multiclass Approach: CNN  +  LSTM  +  S  E attention
Key Features: Uses ensemble empirical mode decomposition (EEMD) preprocessing;
SE attention over channels
Limitations: Lower accuracy, slower LSTM, sensitive t o imbalance

1D ResNet [24] 98.63% Multiclass Approach: Residual 1D C NN with SMOTE
Key Features: 6 conv layers + 3 p ooling; high specificity (99.06%)
Limitations: Lower sensitivity (92.4%), fixed architecture

MB-MHA-TCN [ 25] 98.75% Multiclass Approach: Multi-branch Temporal Convolutional Networks + Multi-head Attention
Key Features: Parallel dilated branches, focal l oss, Bayesian tuning
Limitations: High memory/computation

5 Limitations and Future Work 

This study introduces a modular and reproducible framework intended for the 
binary classification of ECG signals. We recognize the potential for integrating 
this framework within a real-time system, thereby simulating its applicability in 
real-world environments. H owever, several limitations or challenges encountered
during deployment are elaborated on in the following points:

– ONNYX has been deployed on Kubernetes using the Docker driver for local 
development for distributed setup. We noted that the platform extensively 
uses RAM for storing the intermediate results which claims mu ch of memory
resources. This does not affect the predictions as the training and testing
times are maintained well.

– Adapting the system to handle heterogeneous data sources will need writing
of custom pre-processing jobs.

Our future initiatives include the integration of tools for scheduling and event-
based job orchestration, as well as the enhancement of observability tools to 
improve system administration. Moreover, we intend to incorporate components 
that define our f ramework into an Infrastructure as Code (IaC) tool, thereby
rendering deployment processes more adaptable to future advancements.

While ONNYX is designed to process diverse ECG datasets, as noted in the 
limitations, modifications to preprocessing jobs might be necessary depending 
on the structure of incoming data. By modifying ONNYX to avoid storing inter-
mediate results extensively in RAM, we can accommodate even larger volumes 
of data in memory-constrained setups, leading to a more cost-effective solution. 
For end-to-end integration with a hospital in a real-world setup, since the model
is offered via an HTTP API endpoint, a hospital would just need to provide a
way for the system to access their data and get results. The modularity offered
by ONNYX also facilitates the setup of a custom frontend.
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6 Conclusion 

We presented ONNYX, a big data analytics framework for the classification 
of ECG data streams with an open source modular architecture. Our frame-
work used deep learning to detect heart arrhythmias and allows components to 
be interchanged for various ECG use cases. We integrate Thompson Sampling 
with probabilistic weights to find optimal methods. Using a ranking strategy, 
we achieved 99.27% accuracy in binary and 99.16% accuracy in multiclass with 
a majority voting ensemble of top-ranked approaches selected by the multiban-
dit approach. We presented architectural details, hyperparameters, a nd compar-
isons with state-of-the-art models, including multiclass performance. ONNYX
supports adaptive ensembling, enabling model combinations to evolve dynami-
cally during real-world deployment, with the architecture accommodating these
changes. XAI with Shapley plots provides insight into the model’s predictions.
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