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Abstract—Real-time threat detection in streaming data is
crucial yet challenging due to varying data volumes and speeds.
This paper presents an architecture designed to manage large-
scale, high-speed data streams using deep learning and machine
learning models. The system utilizes Apache Kafka for high-
throughput data transfer and a publish-subscribe model to
facilitate continuous threat detection. Various machine learning
techniques, including XGBoost, Random Forest, and LightGBM,
are evaluated to identify the best model for classification. The
ExtraTrees model achieves exceptional performance with accu-
racy, precision, recall, and F1 score all reaching 99% using the
SensorNetGuard dataset within this architecture. The PyFlink
framework, with its parallel processing capabilities, supports
real-time training and adaptation of these models. The system
calculates prediction metrics every 2,000 data points, ensuring
efficient and accurate real-time threat detection.

Index Terms—Malicious Node, Big Data Analytics, Online
Machine Learning, Internet of Things

I. INTRODUCTION

Cyberattacks have increased as the digital landscape ex-

pands, and malicious actors employ more sophisticated tactics.

Identifying and mitigating these threats is a high priority.

The proliferation of connected devices and the increasing

dependence on online platforms create more opportunities

for cybercriminals to exploit vulnerabilities. In addition, the

sophistication of attacks has grown, making them harder to

detect and defend against. Intrusion detection systems (IDSs)

must continuously improve their ability to detect new types of

attack.

The surge in Internet of Things (IoT) devices and sensors

generates large amounts of data that can contain threats or

anomalies that require attention. Detecting these anomalies is

essential in real-life applications, such as identifying fraudu-

lent financial transactions, fake calls, network intrusions, and

healthcare care anomalies. Such detection provides insights

that might otherwise be overlooked. In a streaming environ-

ment, storing and processing data can be unfeasible due to

high I/O usage or the need for real-time analysis.

Real-time streaming data processing demands high through-

put, low latency, fault tolerance, and highly scalable plat-

forms. Computing platforms are required to handle batch

and stream processing, while streaming architectures must

efficiently transmit, consume, and process data.

This study introduces a high-throughput architecture that

combines deep learning and machine learning models to detect

malicious nodes in real-time IoT data streams. The design

utilizes a publish-subscribe mechanism, wherein data is posted

to a Kafka topic observed by the consumer. PyFlink acts

as the consumer, employing the data for threat classifica-

tion and detection, and functions as the processor within

Kafka’s system framework. Various machine learning and deep

learning models are utilized to select features, competing

to produce the best set of features. The outputs from the

first model to the final version are published in Kafka. This

method aims to provide the quickest results, regardless of the

dataset fed into the system. The proposed architecture selects

the optimal models, guaranteeing reliable results even with

changes in dataset. Identifies a feature set that can easily be

adjusted to changes in data. Using this feature set, a PyFlink

job trains models like Random Forest, XGBoost, and Light-

GBM; predictions are then produced using the model with

the best performance. With PyFlink, a distributed computing

and stream processing framework, these models are trained

efficiently, enabling continuous model updates and retraining

as needed. This allows the architecture to adapt and retain

accuracy as the data evolve.

A. Organisation

This paper is organised as follows. Section I is the intro-

ductory section while Section II throws light on the research

done in this field previously by other researchers. Section

III explains various components used, the architecture and

their functioning. Section IV discusses the application of the

architecture to the SensorNetGuard data set [2]. The last

section of the paper is the summary of the work and also

the future scope of the study.

II. LITERATURE REVIEW

Ibra Him [3] explores the integration of Artificial In-

telligence (AI) and Machine Learning (ML) into real-time

threat intelligence frameworks to enhance cybersecurity. The

paper outlines how AI and ML can be utilized to analyze

large, complex data streams in real time, identifying patterns

and anomalies that may indicate potential cyber threats. It

also investigates how AI-driven analytics can be integrated
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with existing security infrastructures, such as Security In-

formation and Event Management (SIEM) systems, to offer

contextualized insights, reduce alert fatigue, and prioritize

threats more effectively. Additionally, the paper evaluates

the performance of AI algorithms through prototype systems

and simulations, comparing their scalability and effective-

ness against traditional methods. Surianarayanan et al. [1]

propose a high-throughput streaming architecture for real-

time anomaly detection, leveraging Apache Kafka for data

ingestion and Random Forest for anomaly detection. Their

architecture achieves near-zero latency and accuracy as high

as 98.6%, even in distributed node configurations. However,

the data used in this study is not publicly available. Mudgal

and Bhalla [4] focus on improving intrusion detection using

Random Forest and k-means clustering techniques applied

to the CIC-IDS 2018 dataset. Their approach achieves an

impressive 99.66% precision while reducing latency by 30%

through the implementation of their Honeypot Intelligence-

enabled intrusion detection system, deployed on Apache Flink.

Deepthi et al. [5] introduce a Flexible Real-Time Traffic

Stream Processing System (FRTSPS) designed to handle real-

time traffic data streams. Built on the Lambda architecture

and leveraging Apache Flink, their system reduces latency

by 25% compared to traditional systems and shows superior

performance in terms of Events/sec per CPU core and Data

Size when compared to Apache Spark and Apache Storm.

An additional study [6] presents a modular and horizontally

scalable intrusion detection system architecture, designed to

work in real-time or near real-time in a 1 Gbps network

environment. The architecture includes modules for packet

capture, queuing, storage, and analysis, and the study provides

an in-depth performance evaluation using technologies like

tcpdump, Apache Kafka, HDFS, and Apache Spark. Kajiura

and Nakamura [7] evaluate the performance of five popular

machine learning classifiers (Decision Tree, Random Forest,

Naive Bayes, SVM, and kNN) for network intrusion detection.

Their findings reveal notable differences in throughput and

latency across classifiers, with Decision Tree and Naive Bayes

delivering the highest throughput. The study also identifies

performance bottlenecks in components like Zeek, Logstash,

and Elasticsearch, suggesting that choosing the right machine

learning algorithm can reduce system load while maintaining

classifier performance. Atbib et al. [8] propose a distributed

intrusion detection system tailored for IoT environments, im-

plemented within a Fog computing architecture. The system

uses Apache Spark and machine learning algorithms to analyze

data from the NF-ToN-IoT-v2 dataset in real time. Their results

show that Decision Tree and Random Forest outperform other

models, achieving accuracies of 86% and 87%, respectively.

Jemili et al. [9] tackle evolving cyber threats by introducing

a hybrid intrusion detection model that integrates Random

Forest, XGBoost, and decision trees through ensemble learn-

ing. Their model, tested on datasets like N-BaIoT, NSL-KDD,

and CICIDS2017, achieves over 97% accuracy, showcasing

the effectiveness of hybrid approaches in Big Data environ-

ments. Ashraf et al. [10] focus on developing an IoT-based

cybersecurity framework for intrusion detection in the Internet

of Drones (IoD). Their approach combines machine learning

(ML) and deep learning (DL) techniques to address security

challenges in drone networks. Tested on CICIDS2017 and

KDDCup 99 datasets, their system demonstrates high precision

(89-90%), accuracy (91-91%), recall (81-90%), and F-measure

scores (88-90%), providing robust detection capabilities for the

Internet of Drones.

III. METHODOLOGY

This section proposes the BARS architecture and highlights

its components and their working.

Fig. 1. BARS Architecture

Fig. 2. Depiction of Kafka waiting for and consuming messages

A. Tools and Technologies Used

1) Flask API: Flask API hosted on port 5001 (mapped to

5000 on system) to receive sensor data from HTTP POST

requests and send those data to a Kafka topic. It also maintains

a delivery report function that logs whether Kafka message

delivery was successful or not. Polling and Flushing are used

to ensure that messages are sent by polling the producer and

flushing the queue. The message key is a JSON string that

contains the id of the data. The message value is the JSON

string representation of the entire data.
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2) Apache Kafka: Apache Kafka is an open source dis-

tributed streaming platform that offers highly scalable and

fault-tolerant data processing capabilities for real-time data

processing, alerting, and reporting. [11] Kafka is used in

the work as a message broker and serves as the central

nervous system of the framework. It provides a pub-sub model

allowing various sources of inflow and outflow to various

engines/frameworks, while also having higher throughput [12].

While other tools like RabbitMQ are ideal for reliable mes-

sage queuing with complex routing, Kafka excels in high-

throughput, real-time data streaming. Fig. 2 depicts of Kafka

waiting for messages and consuming messages- results from

feature selection jobs in this case.

3) Apache Flink: Apache Flink unifies diverse data pro-

cessing applications in a single execution model, allowing

real-time analytics, continuous data pipelines, historic data

processing, and iterative algorithms [13]. Tools such as Spark

process data in micro-batches, while Flink supports true real-

time streaming making Flink better for low-latency applica-

tions.

4) PostegreSQL: The PostegreSQL database is used to

maintain a record of data received and predictions on data

to be used as a fallback in case of Kafka failure.

5) Docker: Docker, a Platform as a Service (PaaS) uses

OS-level virtualization to deliver software in containers. Each

container is built using an image and each of the containers

is isolated [14]. Docker compose has been used to launch all

containers in the same stack and hosted on the same network

by means of a YAML file. Docker is used to orchestrate

containerized applications that provide container flexibility,

consistency, and user-friendliness. Fig. 3 depicts a screenshot

of the Docker stack (with multiple containers) used in this

work.

6) Feature Selection: Two deep learning methods for fea-

ture selection were long-short-term memory (LSTM) networks

and Deep Neural Networks (DNN). 33,441 trainable parame-

ters were split across two LSTM layers and one dense layer

in the LSTM model. The DNN model included six layers and

12,673 trainable parameters. These models were optimized

using Particle Swarm Optimization (PSO), which is renowned

for its quick convergence. Furthermore, LightGBM and other

machine learning models were used for feature extraction,

and both PSO and Genetic Algorithms (GA) were used for

optimization.Both PSO and GA are wrapper functions. A

total of four feature sets were generated. To optimize the

architecture, priority was given to the feature set that was

produced first. This was achieved by creating a race condition

through the use of multithreading techniques.

7) Classifiers: Batch mode on PyFlink was used to train

five classifiers: Random Forest, Gradient Boosting, XGBoost,

LightGBM, and Extra Trees. After that, the best model from

this group of classifiers is chosen to predict the streaming data.

B. Integration and Flow

Apache Flink and Apache Kafka together create a complete

set of tools for real-time data processing and analysis, im-

Fig. 3. A screenshot of pipeline components in Docker

proving decision-making and flexibility [15]. Fig. 1 depicts

the flow of data in the pipeline. Raw data is collected via

a REST API and produced to Kafka topic/s as per the API

endpoint, i.e., different topic for different API endpoint. All

of these topics are subscribed to by Flink sinks in various

jobs. The first job performs feature extraction by way of

Deep Learning frameworks namely- LSTM, DNN and ma-

chine learning algorithm (LightGBM) and are optimised with

algorithms namely- Particle Swarm Optimization (PSO) and

Genetic Algorithm.These algorithms run parallelly using multi

threading. The extracted features are posted on various Kafka

topics. A race condition is created to wait for the fastest

algorithm to post its features, which are then posted to a

final topic. LSTM optimised with PSO has consistently been

the first to publish the results on the topic1.We suspect this

is because lstem captures better over longer term and pso

algorithm being generally fastern then Ga algorithms. This

topic is subscribed to by the next job for model training.

The model training job ingests features and data from relevant

Kafka topics and trains five machine learning algorithms on

these data. Before training, the dataframe is passed through

a customised resampler as highlighted in Algorithm 1. A

comparison of the original and resampled class distributions

can be seen in Fig 4. All trained models are serialized as pickle

files (.pkl) and stored in a shared volume between the Flink

Task-Manager and the Job-Manager. This job also saves the

metrics of these models as a CSV file. The next job, which

runs in a streaming environment, is that of prediction. An

algorithmic approach is adopted in this prediction job to select

the best performing model by means of the highest accuracy,

precision, recall and F1 score and the lowest training time, as

outlined in Algorithm 2. The best performing model is then de-

serialized and used to make predictions on the newly received

data. All predictions are produced on a new Kafka topic.

Another PyFlink job computes model performance metrics in

fixed window sizes and produces them for a new Kafka topic.

The predictions are also stored and persist in a PostgreSQL

1The results of other methods have been explored but have not been
discussed due to page limitations
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Algorithm 1 Resample Data with Target Count

1: Input: df : DataFrame with data to be resampled

2: Input: class column: Name of the column with class labels

3: class counts← df [class column].value counts()
4: majority class← max(class counts)
5: minority class← min(class counts)
6: target count← majority class+minority class

2
▷ Target count for balancing

7: resampled dfs← [] ▷ List to store resampled DataFrames

8: for each (class value, count) in class counts do

9: class df ← df [df [class column] == class value]
10: if count < target count then

11: resampled df ← resample(class df, replace=True,

n samples=target count, random state=42)
12: else if count > target count then

13: resampled df ← resample(class df, replace=False,

n samples=target count, random state=42)
14: else

15: resampled df ← class df

16: end if

17: resampled dfs.append(resampled df)
18: end for

19: resampled df ← pd.concat(resampled dfs)
20: Output: resampled df

database. This database is used to be the back-end, and the

front-end is provided by a dashboard. All these components

collectively form what is known as the BARS (Big data

Analytics for Real-time Security) architecture.

The code repository can be accessed at

https://github.com/Rajkanwars15/BARS

IV. RESULTS AND DISCUSSION

The pipeline is tested in the SensorNetGuard dataset [2].

Based on Algorithm 2, the Extra Trees model is selected as

the best performing model due to its superior metrics and

efficiency. The model was then serialized as best model.pkl

for the prediction job.

The data set SensorNetGuard is a dataset for identifying

malicious sensor nodes comprising 10,000 samples with 21

features. It is designed to facilitate the identification of ma-

licious sensor nodes in a network environment, specifically

focusing on IoT-based sensor networks. The dataset includes

a diverse range of features that allow for the application of

machine learning models to identify various types of attacks,

such as black hole, gray hole, flooding attacks, and Sybil

attacks.

The features that exhibit the highest percentage

of outliers are Is Malicious (4.87%) and

Energy Consumption Rate (4.47%), suggesting possible

problems with power and security. Significant variability

is also shown by the packet drop rate (3.68%) and error

rate (4.42%), which may have an effect on the network

dependability. The outlier proportions for the majority of

other indicators range from 1% to 2%, indicating periodic

aberrations but overall consistency in those areas. The two

metrics with the fewest outliers are Bandwidth (0.67%) and

Number of Neighbors (0.13%), indicating more consistent

behavior in these areas.The observed outliers comprise

malicious nodes.

The performance of the five machine learning models is

evaluated and ranked based on accuracy, precision, recall, F1

score, and training time, as shown in Table I. The Extra Trees

model achieved the highest rankings across all metrics, in-

cluding accuracy (0.9994), precision (0.9994), recall (0.9994),

and F1 score (0.9994), with the shortest training time of

2.25 seconds. It is worth noting that, even though LightGBM

and XGBoost rank higher due to better Accuracy, Precision,

Recall, F1 Score; both these models take significantly longer

to train (58-59 seconds) as compared to Gradient Boosting and

Random Forest.

TABLE I
RANKED MODELS WITH METRICS

Rank Model Accuracy Precision Recall F1 Score Training Time

1 ExtraTrees 0.9994 0.9994 0.9994 0.9994 2.2492
2 LightGBM 0.9984 0.9984 0.9984 0.9984 58.3919
3 XGBoost 0.9982 0.9982 0.9982 0.9982 24.2645
4 GradientBoosting 0.9974 0.9974 0.9974 0.9974 4.7614
5 RandomForest 0.9970 0.9970 0.9970 0.9970 4.1090

ROC Curve of the models can be seen in Fig. 5. All models

perform exceptionally well, with AUC values close to or at

1.00. XGBoost and LightGBM are the best-performing models
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Algorithm 2 Select and Serialize the Best Model

1: Input: List of models with their metrics and attributes

2: Output: Serialized best model as best_model.pkl

3: Parameters:

4: criteria ← List of criteria for sorting (e.g., accuracy, precision, recall, f1 score)

5: sort order ← List indicating sorting order for each criterion (e.g., descending, ascending)

6: models metrics ← list of tuples (model, metrics, attributes)

7: for criterion, order in zip(criteria, sort order) do

8: models metrics.sort by(criterion, order) ▷ Sort by the current criterion

9: end for

10: best model ← models metrics[0].model ▷ Select the top model

11: Serialize best model to file best model.pkl

Fig. 4. Class Distributions

Fig. 5. ROC Curve of Models

while Random Forest, Extra Trees, and Gradient Boosting

show a slight deviation from a perfect score.

The top 2 models are compared in figure 6.

However, the main difference is depicted in figure 7 in terms

of training time.

ExtraTrees consistently outperforms LightGBM across all

metrics, though the differences are minimal. The close values

indicate that both models are highly effective for the task,

but ExtraTrees has a slight edge in terms of predictive perfor-

mance.

Fig. 6. Comparison of 2 best performing models

Fig. 7. Training Time Comparison of 2 best performing models

To ensure robustness, 5-fold cross-validation was performed

for each model. The Extra Trees model consistently demon-

strated high accuracy, precision, recall, and F1 scores across

all folds, with only minor variations. In particular, the Extra

Trees model achieved a perfect score of 1.0 in several places,

reinforcing its superior performance.

LightGBM exhibited variability in its cross-validation re-

sults, with a peak accuracy of 1.0 in some cases but lower val-

ues in others, reflecting some instability. Similarly, XGBoost

and Gradient Boosting showed strong results with occasional

slight dips, while Random Forest displayed the most variability

in accuracy and other metrics across folds.

After selecting and applying the optimal model, its perfor-
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mance was evaluated across different window sizes to find the

best evaluation threshold [16]. Testing window sizes of 500,

1000, and 2000 data points revealed that the accuracy for 1000

data points (0.968) was lower than for both 500 and 2000

data points. This suggests that training with 2000 data points

offers better generalization. Additionally, Table II shows that

predictions for 2000 points are made within 5 seconds.

TABLE II
PERFORMANCE EVALUATION ON VARYING WINDOW SIZES

Number of points Accuracy Precision Recall F1-Score Inference Time

500 0.988 0.988 0.988 0.988 1.25s
1000 0.968 0.974 0.968 0.9701 2.47s
2000 0.993 0.993 0.993 0.993 5.05s

V. CONCLUSION AND FUTURE SCOPE

In this paper, we have developed and implemented the

BARS architecture. The BARS architecture has been designed

for stream-based IoT applications, incorporating multiple deep

learning-driven feature selection techniques, various machine

learning classifiers, race condition-based feature selection

methods, and algorithmic classifier selection to enable real-

time predictions with almost zero latency. This architecture

performs feature selection and model training in batch mode

from data streams and subsequently makes real-time predic-

tions in stream mode. It also assesses its predictions in a

windowed manner to ensure robustness. While Kafka serves

as the core of the pipeline, PostgreSQL acts as a backup in

case of failure. The architecture has been deployed on the

SensorNetGuard dataset to highlight its practical viability. The

entire application is containerized using Docker, making it

simple to relocate and deploy this pipeline on another host

machine or cloud environment. An advantage of using the

BARS architecture is the lower computation cost and the

ability to predict in real time with minimal deployment time,

along with the flexibility to customize the algorithms for

feature selection, training, and prediction. Future work will

focus on scalability by introducing single/multi-broker setups

and multiple worker nodes for Flink and Kafka. Due to the

use of Docker, transitioning to Docker Swarm or Kubernetes to

add scalability in the future is quite straightforward.Singh et al.

[17] suggest integrating mobile crowdsourcing with intelligent

agents and IoT devices for scalable, adaptive, and efficient

intrusion detection, another promising area for future IDS

research.
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