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Abstract—In high-volume, high-velocity contexts,
threat identification requires effective real-time
data stream analysis. This study offers a novel
architecture—real-time processing of high-speed
data streams—that is critical for effective threat
identification in dynamic contexts. By using a publish-
subscribe approach with Apache Kafka, the system is
able to manage differences in data volume between
many nodes. Experiments on the CICIoV24 and the
CICEVSE2024 datasets indicate that the XGBoost model
performs better, with high accuracy and robustness
against adversarial attacks. Its performance degrades
during the HopSkipJump attack, however, defence
training can help with it. Moreover, our analysis shows
that RandomForest and ExtraTrees perform better in
noisy data from the CICIoV24 and XGBoost perform
better in noisy data from the CICEVSE24 dataset,
emphasizing the importance of selecting algorithms
based on performance indicators. The architecture
utilizes PyFlink’s distributed computation framework
to improve computational efficiency for real-time
processing and solves idea drift to ensure flexibility in
changing data attributes.

Index Terms—Real-Time Data Processing, Apache
Kafka, Apache Flink, Deep Learning, Machine Learning,
Model Robustness, Drift Detection

I. INTRODUCTION

The growing number of IoT devices has made adap-
tive and resilient intrusion detection systems (IDS)
more important in the rapidly changing field of cyber
security. The ongoing increase in cyber attacks has
highlighted the need for real-time threat detection sys-
tems that can adapt to these difficulties. IoT networks
provide particular difficulties in identifying and reduc-
ing security threats because of their high-volume, high-
velocity data inflow. A thorough architecture that in-
corporates advanced drift detection algorithms and en-
sures adversarial robustness has been designed for real-
time intrusion detection in Internet of Things (IoT) en-
vironments in order to meet these complications. Mod-
ern deep learning and machine learning models have
been applied to efficiently process fast data streams
from IoT devices [18]. This architecture is built on
a distributed framework utilizing Apache Kafka and
PyFlink, which facilitates scalable and fault-tolerant
data transmission and threat classification. Specialized
algorithms have been employed to monitor changes
in data distributions, allowing for real-time adaptation
to evolving threats and ensuring system reliability.
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Additionally, the architecture is capable of detecting
unknown threats by continuously updating its models
through adversarial training, thereby providing an extra
layer of security. Techniques for ensemble learning
have been applied to improve the system’s accuracy
and robustness to noisy data. In Internet of Things
contexts, model retraining procedures guarantee real-
time adaptability to new attack vectors. The security
of TIoT networks has been greatly strengthened by
these efforts, leading to a scalable and reliable solution
that successfully tackles the dynamic and unexpected
nature of cyber threats within the IoT ecosystem.

II. LITERATURE REVIEW

A comparative study [14] was conducted to assess
various machine learning algorithms (LightGBM, XG-
Boost, CatBoost, and LCCDE) for intrusion detection
using the CICIoV2024 dataset, where perfect accuracy,
recall, precision, and F1-score were reported. However,
details regarding training time and train-test splits were
not provided. In a replication of LightGBM and XG-
Boost in a pure Python environment with a 60:40 split,
training times were observed to reach several hundred
seconds, indicating a need for models with reduced
data and features for IoT applications. A system was
proposed to address urban traffic congestion utilizing
tree-based strategies, including Decision Tree (DT),
Random Forest (RF), Extra Tree (ET), and XGBoost,
achieving an accuracy of 99.05%, surpassing KNN
(96.6%) and SVM (98.01%) [15]. Feature selection
through ensemble learning was employed, resulting in
enhanced detection accuracy with minimal computa-
tional costs. The system was evaluated using the CIC-
IDS2017 dataset, and while it showed promise, further
exploration of deep learning algorithms for feature
selection was suggested to bolster robustness against
attacks. Using the CICEVSE2024 dataset, a compara-
tive study was conducted to analyze anomaly detection
methods within Electric Vehicle Charging Stations
(EVCS), including KNN, RF, SVM, and Neural Net-
works (NN). Accuracy was reported to range from
77.61% (SVM) to 91.97% (NN), with precision and re-
call displaying similar trends. While promising metrics
were provided, specific details regarding training time
and splits were not included. When Federated Learning
(FL) models were implemented with Deep Neural
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Networks (DNNs), a significant accuracy improvement
to 97% was achieved, highlighting FL’s potential in
decentralized IoT environments. A federated strategy
was developed to integrate FL with local models stored
on charging station management systems, demonstrat-
ing superior detection precision and efficiency. The
system’s resilience against attacks such as Distributed
Denial of Service and Man-in-the-Middle was eval-
uated using real-world data, though further research
was deemed necessary to enhance model robustness
through deep learning-based feature selection tech-
niques. The incorporation of AI and ML into real-
time threat intelligence frameworks was explored by
Ibra Him [4], where real-time data processing for
anomaly detection was emphasized. A high-throughput
architecture for anomaly detection was proposed by
Surianarayanan et al. [2], achieving an accuracy of
98.6% with near-zero latency through the use of Ran-
dom Forest and Apache Kafka. Mudgal and Bhalla
[5] applied Random Forest and k-means clustering to
the CIC-IDS 2018 dataset, attaining a precision of
99.66% while reducing latency by 30% using Flink. A
Flexible Real-Time Traffic Stream Processing System
(FRTSPS) was introduced by Deepthi et al. [6], which
outperformed Apache Spark and Apache Storm with a
latency reduction of 25%. Another study [7] described
a modular IDS architecture designed for real-time
data analysis in a 1 Gbps environment. A distributed
framework for machine learning-based intrusion detec-
tion systems was assessed by Kajiura and Nakamura
[8], revealing significant differences in throughput
and latency among classifiers. A Distributed Intrusion
Detection System for IoT was proposed by Atbib et al.
[9], with Decision Tree (86% accuracy) and Random
Forest (87% accuracy) outperforming other algorithms.
A hybrid model combining Random Forest, XGBoost,
and decision trees was presented by Jemili et al. [10],
achieving over 97% accuracy across multiple datasets.
Finally, an IoT-based cybersecurity framework for the
Internet of Drones (IoD) was developed by Ashraf
et al. [11], effectively detecting cyberattacks using
B-LSTM and LSTM models, which achieved high
performance on the CICIDS2017 and KDDCup 99
datasets.

III. METHODOLOGY
A. Data Ingestion and Streaming

The data pipeline initiates the real-time acquisition
of data from various sources like IoT sensors, network
traffic, and other pertinent input channels. The raw
data is gathered via a REST API that publishes the
information to numerous Apache Kafka topics. Kafka
functions as the backbone of the pipeline, offering
scalability, fault tolerance, and high throughput within
a distributed framework. The API delivers data to
Kafka topics, segregating streams based on different
categories. These categories are ingested in parallel by
various components for further processing.
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B. Data Resampling

To handle class imbalance in the dataset, the Im-
balancedDatasetSampler in PyTorch is utilized. This
sampler addresses the problem by modifying the class
distribution, oversampling minority classes, and under-
sampling majority ones according to specified target
counts. Consequently, a balanced dataset is maintained
throughout training, improving the model’s perfor-
mance on minority classes. Class distributions are
rebalanced during sampling, with sampling weights
automatically calculated based on class frequencies.
This method removes the necessity of creating a sep-
arate balanced dataset.

C. Feature Extraction Using Deep Learning

When data is ingested, the feature extraction stage is
triggered using deep learning (DL) models within the
system. The pipeline incorporates two models: LSTM
(Long Short-Term Memory) and DNN (Deep Neural
Networks) for feature extraction. These models are
algorithmically refined using techniques like Particle
Swarm Optimization (PSO) and Genetic Algorithms
(GA). PyFlink provides parallel processing, while PSO
and GA perform optimization. The feature extraction
models operate concurrently, resulting in a race con-
dition between them. The model that completes first
publishes its features to a Kafka topic. This real-time
strategy ensures that the fastest and most effective
model is chosen for subsequent tasks.

D. Machine Learning Model Training

Within the pipeline, several machine learning (ML)
models are trained using PyFlink, including Random
Forest, XGBoost, LightGBM, Gradient Boosting, and
Extra Trees classifiers. These models undergo hyperpa-
rameter tuning through techniques like Particle Swarm
Optimization (PSO) and Genetic Algorithms (GA) to
achieve the best performance. Each classifier is trained
on a resampled and optimized set of features with
five-fold cross-validation employed during the training
process. The model chosen for inference is selected
according to the procedure described in Algorithm 1.

E. Model Evaluation and Real-Time Predictions

Upon selecting the optimal model, it is deployed
to generate real-time predictions on incoming data
streams. The predictions produced by the model are
continuously updated on a Kafka topic. The model’s
performance is subject to ongoing monitoring, and in
the event of significant performance drift, the model
undergoes retraining on the latest data to ensure the
maintenance of optimal accuracy.

F. Robustness Testing

Concurrently, Model Poisoning is employed to eval-
uate the robustness of the trained and selected model.
Furthermore, the practice of model assault enhances
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Fig. 1. AURA Framework

Algorithm 1 Rank Model Results

df [‘CustomRank'] < 0.8 x df [ Accurac

ranked_df — df .sort_values(by
False).reset_index(drop = True)

A e

a

Input: ResultsofModels: Dictionary with model results
df < pd.DataFrame(results).T.reset_index()
df rename(columns = {‘index’ : ‘Model Name'}, inplace = True)

60
y'] 4+ 0.2 x (7df[’Time'])

‘CustomRank’, ascending

ranked_df [ Rank'] < ranked_df.index + 1

7: Output: Display top 5 rows of ranked_df

8: Save: ranked_df.to_csv(‘ranked_model_

metrics.csv’,index = False)

vulnerability identification, security, and generalizabil-
ity. Attack simulations elucidate vulnerabilities and fa-
cilitate the development of defensive measures. Model
attacks also serve as benchmarks for evaluating and
contrasting various models and defence strategies,
thereby ensuring the creation of more reliable and
robust systems.

G. Drift Detection and Model Retraining

The code integrates drift detection to monitor and
adapt the model’s performance in real-time. The AD-
WINAccuracy detector tracks changes in accuracy,
updating its state with each new data row. If drift is
detected, an error is triggered, indicating the row where
performance drops. Likewise, the KdqTreeStreaming
detector, using a sliding window, monitors changes in
feature distributions. An ensemble of both detectors,
employing a majority voting mechanism, is used to
improve reliability. Drift detection is only invoked
when model performance falls below a certain thresh-
old, prompting either retraining or replacement with
the next best model. Hyperparameter optimization is
skipped to reduce computational load, ensuring faster
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deployment. This approach ensures the model remains
adaptable and efficient as data evolves.

IV. RESULTS AND DISCUSSION
A. CICloV 2024

The AURA framework is tested in the CIC IoV
24 dataset [3]. Since the classes are imbalanced, Im-
balancedDatasetSampler is utilised as highlighted in
Section III-B and the changes can be seen in Fig. 2A.
Based on Algorithm 1, the XGBoost model is selected
as the best-performing model. The model was then
serialized as inference_model.pkl for the prediction
job. Based on the predictions made by the model, a
plot of the Decision Boundary can be seen in Fig. 3.

The decision boundary plot of an XGBoost model
in fig 3, illustrates the classification behaviour of
the model. The x and y-axes represent two features
from the dataset, while the color gradient denotes
predicted class probabilities. The decision boundary,
demarcating the transition between Class 0 (blue)
and Class 1 (red) predictions, exhibits an irregular
shape, underscoring the model’s non-linear decision-
making capabilities. This complexity is attributable to
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Fig. 3. Decision Boundary of XGBoost Model

the iterative boosting process employed by XGBoost,
wherein decision trees are sequentially constructed
to refine errors made by previous trees. The data
points, represented by black circles, demonstrate how
the model separates the classes. Points in proximity
to the decision boundary indicate regions of reduced
confidence, where predictions are more susceptible
to change. Notable instances of misclassification or
ambiguity are observed, as evidenced by blue patches
within red regions and vice versa. While XGBoost’s
complexity enables the capture of intricate patterns,
it also increases the risk of overfitting, particularly
in sparsely populated areas of the feature space. The
trade-off between classification accuracy and general-
ization is thus highlighted, underscoring the impor-
tance of carefully balancing model complexity and
regularization.
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Fig. 4. Visualisation of XGBoost Model

In Fig. 4, the decision tree of the XGBoost model
is illustrated, showcasing how the dataset is split
based on various features, such as 2’ and ’4’. Each
path is depicted to represent a sequence of splits,
guiding samples through decision points. This process
continues until the samples are directed to the terminal
leaf nodes, where final predictions are generated.

The performance of the five machine learning mod-
els is evaluated, utilising 5-fold cross-validation and
ranked based on overall accuracy, precision, recall, F1
score, and training time, as shown in Table L.

The overall metrics of all models can be seen in
Table 1. While there is not a major difference in the
accuracy of each of the models, a major difference
can be observed in training time. In such scenarios
Algorithm 1 is quite useful to select one model for
inference.

TABLE I
RANKED MODELS WITH METRICS

Rank Model Accuracy | Precision Recall | F1 Score | Training Time
1 XGBoost 0.960645 | 0.963521 | 0.960645 | 0.960584 3.251693
2 LightGBM 0.960645 | 0.963521 | 0.960645 | 0.960584 8.02442
3 ExtraTrees 0.960645 | 0.963521 | 0.960645 | 0.960584 24.491888
4 RandomPForest | 0.960645 | 0.963521 | 0.960645 | 0.960584 24.619227
5 GradientBoosting | 0.960645 | 0.963521 | 0.960645 | 0.960584 30.115168

To ensure robustness, 5-fold cross-validation was
performed for each model. Figure 5 depicts cross-
validation performed on the highest ranked model, as
per Algorithm 1, using a parallel coordinate plot.

Dataset Fold Accuracy Precision Recall F1-Score
0.962079 0.964754 0.962079 0.962025
CICEVSE L —
N T ——0.960 096 0096
\ 0.96
0/95 0.95 0.95
4 /7 0.95
/' / 0.94 0.94 0.94

CIC IOV #~

0.90026

0.904188 0.90026 0.900003

Fig. 5. 5-fold CV on XGBoost Model Training

To determine vulnerabilities, two black box tests
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were applied to the best-performing model, selected
for inference. Their metrics can be seen in Table II.

The Zeroth Order Optimization (ZOO) attack was
applied to the best-performing model (XGBoost).
Specifically, the ZOO attack proposed by Chen et al.
[12] was employed. This attack, which operates with-
out any knowledge of the model’s internal structure,
relies solely on the model’s input-output mappings.
The ZOO attack utilizes iterative querying of the
model with strategically chosen inputs to estimate
the direction towards optimal adversarial examples. In
this attack, a coordinate descent algorithm was used
to optimize the input vector iteratively. During each
iteration, a coordinate was selected for updating, and a
binary search was performed to determine the optimal
value for that coordinate. The model’s performance
does not deteriorate on the attack, as can be seen in
Fig. 6A.

The HopSkipJumpAttack [13] was applied to the
XGBoost model, which operates in a decision-based
black-box setting where only output labels are ob-
servable. HopSkipJumpAttack estimates the gradient
direction through random sampling around the deci-
sion boundary and employs an iterative approach with
binary search and gradient estimation. This attack was
designed to generate adversarial examples by making
imperceptible alterations to inputs, thereby causing
the model to produce incorrect predictions, as can be
seen in Fig. 6B By exploiting the model’s sensitivity
to these subtle changes, HSJA successfully compro-
mised the model’s accuracy. Following the application
of HSJA, the model’s performance deteriorated. To
address this vulnerability, a defense mechanism was
subsequently trained. This defence effectively coun-
teracted the attack, leading to the restoration of the
model’s performance, as seen in Fig. 6C.

TABLE II
PERFORMANCE OF XGBOOST UNDER ATTACK
Attack Class | Accuracy | Precision | Recall | F1 Score
HOPSKIPJUMP ATTACK 0 0.50 0.5 1 0.67
HOPSKIPJUMP ATTACK 1 0.00 0.00 0.00 0.92
Z0O0 Attack 0 0.92 0.87 1.00 0.93
Z00 Attack 1 0.92 1.00 0.85 0.92
TABLE III
PERFORMANCE OF XGBOOST AFTER DEFENCE TRAINING
Attack Class | Accuracy | Precision | Recall | F1 Score
Post Defence 0 0.96 0.92 1.00 0.96
Post Defence 1 0.96 1.00 0.92 0.96

Table III outlines the improved performance of the
XGBoost model after defence training, demonstrating
restored accuracy (96%) and robustness against the at-
tack, ensuring reliability under adversarial conditions.

To simulate drift, gaussian noise is added to the
training data, and deterioration in performance can be
seen in table IV. This drift is detected by Adaptive
Windowing (ADWIN). ADWIN operates by maintain-
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ing a sliding window of the most recent data and
continuously monitoring the accuracy of the model
on this window. Upon drift detection, the model is
retrained.

TABLE IV
MODEL PERFORMANCES ON GAUSSIAN NOISES
Rank Model Accuracy | Precision | Recall | F1 Score
1 ExtraTrees 0.9493 0.9529 | 0.9493 | 0.9492
2 RandomForest 0.9382 0.9423 | 0.9382 | 0.9381
3 GradientBoosting | 0.9309 0.9339 | 0.9309 | 0.9307
4 XGBoost 0.9231 0.9315 | 0.9230 | 0.9227
5 LightGBM 0.9135 09138 | 0.9135 | 0.9135
08 /’/ 08 ,/'/
02 /’/ 02 ///
/’/ ROC curve (area = 0.99) ,// ROC curve (area = 0.96)
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Fig. 6. ROC Curve of XGBoost Model under attack and defence
retrained

B. CIC EVSE 2024

The AURA framework has been analyzed using
the CIC EVSE 2024 dataset [16]. The classes are
not balanced, as indicated in Section III-B, therefore
Imbalanced Dataset Sampler (2B) is also utilized.
Once again, the XGBoost model is the best-performing
model, as decided by algorithm 1. The outcomes of the
five machine learning models’ 5-fold cross-validation
evaluation are shown in Table V. The following factors
are used to rank the models: recall, F1 score, overall
accuracy, precision, and training duration.

The overall metrics of all models can be seen in
Table V. While there is not a major difference in the
accuracy of each of the models, a major difference
can be observed in training time. In such scenarios
Algorithm 1 is quite useful to select one model for
inference.
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TABLE V
RANKED MODELS WITH METRICS ON CICEVSE2024

Rank Model Accuracy | Precision | Recall | F1 Score | Training Time
1 XGBoost 0.913869 | 0.915068 | 0.913869 | 0.913795 2.5613472
LightGBM 0.912134 | 0.914059 | 0.912134 | 0.912015 5.15944536
3 ExtraTrees 0.909619 | 0.911001 | 0.908405 | 0.908834 15.285908
4 RandomForest 0.904849 | 0.908438 | 0.905196 | 0.904977 17.78417
5 GradientBoosting | 0.913956 | 0.914020 | 0.913695 | 0.913516 25.128851

To ensure robustness, 5-fold cross-validation was
performed for each model. Figure 5 depicts cross-
validation performed on the highest ranked model
using a parallel coordinate plot, as per Algorithm 1.
Again, to test robustness ZOO and HOPSKIPJUMP
attack are utilised.

TABLE VI
PERFORMANCE OF XGBOOST UNDER ATTACK
Attack Class | Accuracy | Precision | Recall | F1 Score
HOPSKIPJUMP ATTACK 0 0.91 0.89 0.93 0.91
HOPSKIPJUMP ATTACK 1 0.91 0.93 0.89 0.91
700 Attack 0 0.91 0.89 0.93 0.91
Z0O0 Attack 1 0.91 0.93 0.89 0.91
TABLE VII
PERFORMANCE OF XGBOOST AFTER DEFENCE TRAINING
Attack Class | Accuracy | Precision | Recall | F1 Score
Post Defence 0 091 0.89 0.93 0.91
Post Defence 1 0.91 0.93 0.88 0.91

Table VII highlights the improved performance of
the XGBoost model after defense training, demonstrat-
ing restored accuracy (91%) and robustness against
HopSkipJump and ZOO attacks, ensuring reliability
under adversarial conditions.

V. CONCLUSION AND FUTURE SCOPE

The work proposes a real-time intrusion detection
pipeline was designed for Internet of Things (IoT)
data streams using deep learning, machine learning,
PyFlink, and Apache Kafka. It is capable of prompt
threat detection and performs well in various scenarios
with added robustness through drift detection and
adversarial framework. Optimization techniques like
Particle Swarm Optimization and Genetic Algorithms
improved model efficiency. The XGBoost model per-
formed best on the CICIoV dataset. Future improve-
ments could include enhanced protections, support for
sophisticated attacks, scalability for larger datasets,
explainability mechanisms, and advanced drift detec-
tion algorithms to maintain effectiveness in dynamic
environments.
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